Skip to content
GitLab
Menu
Projects
Groups
Snippets
/
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Menu
Open sidebar
Christian Müller
NIWO
Commits
1eee9254
Commit
1eee9254
authored
Mar 17, 2017
by
Christian Müller
Browse files
add small result formulas
parent
d3643fe9
Changes
5
Hide whitespace changes
Inline
Side-by-side
results/workflow.ltl
→
results/workflow
1agent
.ltl
View file @
1eee9254
File moved
results/workflow2agents.ltl
0 → 100644
View file @
1eee9254
G ((n0 → X n1) ∧ (n1 → X (n3 ∨ n2)) ∧ (n2 → X n2) ∧ (n3 → X n1)) ∧ G (¬(n0 ∧ n1) ∧ ¬(n0 ∧ n2) ∧ ¬(n0 ∧ n3) ∧ ¬(n1 ∧ n2) ∧ ¬(n1 ∧ n3) ∧ ¬(n2 ∧ n3)) ∧ ((n0 ∧ X n1) → ((X Q_a_a ↔ (Q_a_a ∨ (O_a ∧ choice0_a_a))) ∧ (X Q_b_a ↔ (Q_b_a ∨ (O_a ∧ choice0_b_a))) ∧ (X Q_a_b ↔ (Q_a_b ∨ (O_b ∧ choice0_a_b))) ∧ (X Q_b_b ↔ (Q_b_b ∨ (O_b ∧ choice0_b_b))) ∧ ((X O_a ↔ O_a) ∧ (X O_b ↔ O_b) ∧ ((X R_a_a ↔ R_a_a) ∧ (X R_b_a ↔ R_b_a) ∧ (X R_a_b ↔ R_a_b) ∧ (X R_b_b ↔ R_b_b) ∧ ((X S_a_a_a ↔ S_a_a_a) ∧ (X S_b_a_a ↔ S_b_a_a) ∧ (X S_a_b_a ↔ S_a_b_a) ∧ (X S_b_b_a ↔ S_b_b_a) ∧ (X S_a_a_b ↔ S_a_a_b) ∧ (X S_b_a_b ↔ S_b_a_b) ∧ (X S_a_b_b ↔ S_a_b_b) ∧ (X S_b_b_b ↔ S_b_b_b)))))) ∧ ((n1 ∧ X n3) → ((X S_a_a_a ↔ (S_a_a_a ∨ R_a_a)) ∧ (X S_b_a_a ↔ (S_b_a_a ∨ R_a_a)) ∧ (X S_a_b_a ↔ (S_a_b_a ∨ R_b_a)) ∧ (X S_b_b_a ↔ (S_b_b_a ∨ R_b_a)) ∧ (X S_a_a_b ↔ (S_a_a_b ∨ R_a_b)) ∧ (X S_b_a_b ↔ (S_b_a_b ∨ R_a_b)) ∧ (X S_a_b_b ↔ (S_a_b_b ∨ R_b_b)) ∧ (X S_b_b_b ↔ (S_b_b_b ∨ R_b_b)) ∧ ((X O_a ↔ O_a) ∧ (X O_b ↔ O_b) ∧ ((X Q_a_a ↔ Q_a_a) ∧ (X Q_b_a ↔ Q_b_a) ∧ (X Q_a_b ↔ Q_a_b) ∧ (X Q_b_b ↔ Q_b_b) ∧ ((X R_a_a ↔ R_a_a) ∧ (X R_b_a ↔ R_b_a) ∧ (X R_a_b ↔ R_a_b) ∧ (X R_b_b ↔ R_b_b)))))) ∧ ((n1 ∧ X n2) → ((X O_a ↔ O_a) ∧ (X O_b ↔ O_b) ∧ ((X Q_a_a ↔ Q_a_a) ∧ (X Q_b_a ↔ Q_b_a) ∧ (X Q_a_b ↔ Q_a_b) ∧ (X Q_b_b ↔ Q_b_b) ∧ ((X R_a_a ↔ R_a_a) ∧ (X R_b_a ↔ R_b_a) ∧ (X R_a_b ↔ R_a_b) ∧ (X R_b_b ↔ R_b_b) ∧ ((X S_a_a_a ↔ S_a_a_a) ∧ (X S_b_a_a ↔ S_b_a_a) ∧ (X S_a_b_a ↔ S_a_b_a) ∧ (X S_b_b_a ↔ S_b_b_a) ∧ (X S_a_a_b ↔ S_a_a_b) ∧ (X S_b_a_b ↔ S_b_a_b) ∧ (X S_a_b_b ↔ S_a_b_b) ∧ (X S_b_b_b ↔ S_b_b_b)))))) ∧ ((n2 ∧ X n2) → ((X O_a ↔ O_a) ∧ (X O_b ↔ O_b) ∧ ((X Q_a_a ↔ Q_a_a) ∧ (X Q_b_a ↔ Q_b_a) ∧ (X Q_a_b ↔ Q_a_b) ∧ (X Q_b_b ↔ Q_b_b) ∧ ((X R_a_a ↔ R_a_a) ∧ (X R_b_a ↔ R_b_a) ∧ (X R_a_b ↔ R_a_b) ∧ (X R_b_b ↔ R_b_b) ∧ ((X S_a_a_a ↔ S_a_a_a) ∧ (X S_b_a_a ↔ S_b_a_a) ∧ (X S_a_b_a ↔ S_a_b_a) ∧ (X S_b_b_a ↔ S_b_b_a) ∧ (X S_a_a_b ↔ S_a_a_b) ∧ (X S_b_a_b ↔ S_b_a_b) ∧ (X S_a_b_b ↔ S_a_b_b) ∧ (X S_b_b_b ↔ S_b_b_b)))))) ∧ ((n3 ∧ X n1) → ((X R_a_a ↔ (R_a_a ∨ Q_a_a)) ∧ (X R_b_a ↔ (R_b_a ∨ Q_b_a)) ∧ (X R_a_b ↔ (R_a_b ∨ Q_a_b)) ∧ (X R_b_b ↔ (R_b_b ∨ Q_b_b)) ∧ ((X O_a ↔ O_a) ∧ (X O_b ↔ O_b) ∧ ((X Q_a_a ↔ Q_a_a) ∧ (X Q_b_a ↔ Q_b_a) ∧ (X Q_a_b ↔ Q_a_b) ∧ (X Q_b_b ↔ Q_b_b) ∧ ((X S_a_a_a ↔ S_a_a_a) ∧ (X S_b_a_a ↔ S_b_a_a) ∧ (X S_a_b_a ↔ S_a_b_a) ∧ (X S_b_b_a ↔ S_b_b_a) ∧ (X S_a_a_b ↔ S_a_a_b) ∧ (X S_b_a_b ↔ S_b_a_b) ∧ (X S_a_b_b ↔ S_a_b_b) ∧ (X S_b_b_b ↔ S_b_b_b)))))) ∧ (n0 ∧ ¬n1 ∧ ¬n2 ∧ ¬n3 ∧ ¬Q_a_a ∧ ¬Q_b_a ∧ ¬Q_a_b ∧ ¬Q_b_b ∧ (¬R_a_a ∧ ¬R_b_a ∧ ¬R_a_b ∧ ¬R_b_b ∧ (¬S_a_a_a ∧ ¬S_b_a_a ∧ ¬S_a_b_a ∧ ¬S_b_b_a ∧ ¬S_a_a_b ∧ ¬S_b_a_b ∧ ¬S_a_b_b ∧ ¬S_b_b_b)))
results/workflow3agents.ltl
0 → 100644
View file @
1eee9254
G ((n0 → X n1) ∧ (n1 → X (n3 ∨ n2)) ∧ (n2 → X n2) ∧ (n3 → X n1)) ∧ G (¬(n0 ∧ n1) ∧ ¬(n0 ∧ n2) ∧ ¬(n0 ∧ n3) ∧ ¬(n1 ∧ n2) ∧ ¬(n1 ∧ n3) ∧ ¬(n2 ∧ n3)) ∧ ((n0 ∧ X n1) → ((X Q_a_a ↔ (Q_a_a ∨ (O_a ∧ choice0_a_a))) ∧ (X Q_b_a ↔ (Q_b_a ∨ (O_a ∧ choice0_b_a))) ∧ (X Q_c_a ↔ (Q_c_a ∨ (O_a ∧ choice0_c_a))) ∧ (X Q_a_b ↔ (Q_a_b ∨ (O_b ∧ choice0_a_b))) ∧ (X Q_b_b ↔ (Q_b_b ∨ (O_b ∧ choice0_b_b))) ∧ (X Q_c_b ↔ (Q_c_b ∨ (O_b ∧ choice0_c_b))) ∧ (X Q_a_c ↔ (Q_a_c ∨ (O_c ∧ choice0_a_c))) ∧ (X Q_b_c ↔ (Q_b_c ∨ (O_c ∧ choice0_b_c))) ∧ (X Q_c_c ↔ (Q_c_c ∨ (O_c ∧ choice0_c_c))) ∧ ((X O_a ↔ O_a) ∧ (X O_b ↔ O_b) ∧ (X O_c ↔ O_c) ∧ ((X R_a_a ↔ R_a_a) ∧ (X R_b_a ↔ R_b_a) ∧ (X R_c_a ↔ R_c_a) ∧ (X R_a_b ↔ R_a_b) ∧ (X R_b_b ↔ R_b_b) ∧ (X R_c_b ↔ R_c_b) ∧ (X R_a_c ↔ R_a_c) ∧ (X R_b_c ↔ R_b_c) ∧ (X R_c_c ↔ R_c_c) ∧ ((X S_a_a_a ↔ S_a_a_a) ∧ (X S_b_a_a ↔ S_b_a_a) ∧ (X S_c_a_a ↔ S_c_a_a) ∧ (X S_a_b_a ↔ S_a_b_a) ∧ (X S_b_b_a ↔ S_b_b_a) ∧ (X S_c_b_a ↔ S_c_b_a) ∧ (X S_a_c_a ↔ S_a_c_a) ∧ (X S_b_c_a ↔ S_b_c_a) ∧ (X S_c_c_a ↔ S_c_c_a) ∧ (X S_a_a_b ↔ S_a_a_b) ∧ (X S_b_a_b ↔ S_b_a_b) ∧ (X S_c_a_b ↔ S_c_a_b) ∧ (X S_a_b_b ↔ S_a_b_b) ∧ (X S_b_b_b ↔ S_b_b_b) ∧ (X S_c_b_b ↔ S_c_b_b) ∧ (X S_a_c_b ↔ S_a_c_b) ∧ (X S_b_c_b ↔ S_b_c_b) ∧ (X S_c_c_b ↔ S_c_c_b) ∧ (X S_a_a_c ↔ S_a_a_c) ∧ (X S_b_a_c ↔ S_b_a_c) ∧ (X S_c_a_c ↔ S_c_a_c) ∧ (X S_a_b_c ↔ S_a_b_c) ∧ (X S_b_b_c ↔ S_b_b_c) ∧ (X S_c_b_c ↔ S_c_b_c) ∧ (X S_a_c_c ↔ S_a_c_c) ∧ (X S_b_c_c ↔ S_b_c_c) ∧ (X S_c_c_c ↔ S_c_c_c)))))) ∧ ((n1 ∧ X n3) → ((X S_a_a_a ↔ (S_a_a_a ∨ R_a_a)) ∧ (X S_b_a_a ↔ (S_b_a_a ∨ R_a_a)) ∧ (X S_c_a_a ↔ (S_c_a_a ∨ R_a_a)) ∧ (X S_a_b_a ↔ (S_a_b_a ∨ R_b_a)) ∧ (X S_b_b_a ↔ (S_b_b_a ∨ R_b_a)) ∧ (X S_c_b_a ↔ (S_c_b_a ∨ R_b_a)) ∧ (X S_a_c_a ↔ (S_a_c_a ∨ R_c_a)) ∧ (X S_b_c_a ↔ (S_b_c_a ∨ R_c_a)) ∧ (X S_c_c_a ↔ (S_c_c_a ∨ R_c_a)) ∧ (X S_a_a_b ↔ (S_a_a_b ∨ R_a_b)) ∧ (X S_b_a_b ↔ (S_b_a_b ∨ R_a_b)) ∧ (X S_c_a_b ↔ (S_c_a_b ∨ R_a_b)) ∧ (X S_a_b_b ↔ (S_a_b_b ∨ R_b_b)) ∧ (X S_b_b_b ↔ (S_b_b_b ∨ R_b_b)) ∧ (X S_c_b_b ↔ (S_c_b_b ∨ R_b_b)) ∧ (X S_a_c_b ↔ (S_a_c_b ∨ R_c_b)) ∧ (X S_b_c_b ↔ (S_b_c_b ∨ R_c_b)) ∧ (X S_c_c_b ↔ (S_c_c_b ∨ R_c_b)) ∧ (X S_a_a_c ↔ (S_a_a_c ∨ R_a_c)) ∧ (X S_b_a_c ↔ (S_b_a_c ∨ R_a_c)) ∧ (X S_c_a_c ↔ (S_c_a_c ∨ R_a_c)) ∧ (X S_a_b_c ↔ (S_a_b_c ∨ R_b_c)) ∧ (X S_b_b_c ↔ (S_b_b_c ∨ R_b_c)) ∧ (X S_c_b_c ↔ (S_c_b_c ∨ R_b_c)) ∧ (X S_a_c_c ↔ (S_a_c_c ∨ R_c_c)) ∧ (X S_b_c_c ↔ (S_b_c_c ∨ R_c_c)) ∧ (X S_c_c_c ↔ (S_c_c_c ∨ R_c_c)) ∧ ((X O_a ↔ O_a) ∧ (X O_b ↔ O_b) ∧ (X O_c ↔ O_c) ∧ ((X Q_a_a ↔ Q_a_a) ∧ (X Q_b_a ↔ Q_b_a) ∧ (X Q_c_a ↔ Q_c_a) ∧ (X Q_a_b ↔ Q_a_b) ∧ (X Q_b_b ↔ Q_b_b) ∧ (X Q_c_b ↔ Q_c_b) ∧ (X Q_a_c ↔ Q_a_c) ∧ (X Q_b_c ↔ Q_b_c) ∧ (X Q_c_c ↔ Q_c_c) ∧ ((X R_a_a ↔ R_a_a) ∧ (X R_b_a ↔ R_b_a) ∧ (X R_c_a ↔ R_c_a) ∧ (X R_a_b ↔ R_a_b) ∧ (X R_b_b ↔ R_b_b) ∧ (X R_c_b ↔ R_c_b) ∧ (X R_a_c ↔ R_a_c) ∧ (X R_b_c ↔ R_b_c) ∧ (X R_c_c ↔ R_c_c)))))) ∧ ((n1 ∧ X n2) → ((X O_a ↔ O_a) ∧ (X O_b ↔ O_b) ∧ (X O_c ↔ O_c) ∧ ((X Q_a_a ↔ Q_a_a) ∧ (X Q_b_a ↔ Q_b_a) ∧ (X Q_c_a ↔ Q_c_a) ∧ (X Q_a_b ↔ Q_a_b) ∧ (X Q_b_b ↔ Q_b_b) ∧ (X Q_c_b ↔ Q_c_b) ∧ (X Q_a_c ↔ Q_a_c) ∧ (X Q_b_c ↔ Q_b_c) ∧ (X Q_c_c ↔ Q_c_c) ∧ ((X R_a_a ↔ R_a_a) ∧ (X R_b_a ↔ R_b_a) ∧ (X R_c_a ↔ R_c_a) ∧ (X R_a_b ↔ R_a_b) ∧ (X R_b_b ↔ R_b_b) ∧ (X R_c_b ↔ R_c_b) ∧ (X R_a_c ↔ R_a_c) ∧ (X R_b_c ↔ R_b_c) ∧ (X R_c_c ↔ R_c_c) ∧ ((X S_a_a_a ↔ S_a_a_a) ∧ (X S_b_a_a ↔ S_b_a_a) ∧ (X S_c_a_a ↔ S_c_a_a) ∧ (X S_a_b_a ↔ S_a_b_a) ∧ (X S_b_b_a ↔ S_b_b_a) ∧ (X S_c_b_a ↔ S_c_b_a) ∧ (X S_a_c_a ↔ S_a_c_a) ∧ (X S_b_c_a ↔ S_b_c_a) ∧ (X S_c_c_a ↔ S_c_c_a) ∧ (X S_a_a_b ↔ S_a_a_b) ∧ (X S_b_a_b ↔ S_b_a_b) ∧ (X S_c_a_b ↔ S_c_a_b) ∧ (X S_a_b_b ↔ S_a_b_b) ∧ (X S_b_b_b ↔ S_b_b_b) ∧ (X S_c_b_b ↔ S_c_b_b) ∧ (X S_a_c_b ↔ S_a_c_b) ∧ (X S_b_c_b ↔ S_b_c_b) ∧ (X S_c_c_b ↔ S_c_c_b) ∧ (X S_a_a_c ↔ S_a_a_c) ∧ (X S_b_a_c ↔ S_b_a_c) ∧ (X S_c_a_c ↔ S_c_a_c) ∧ (X S_a_b_c ↔ S_a_b_c) ∧ (X S_b_b_c ↔ S_b_b_c) ∧ (X S_c_b_c ↔ S_c_b_c) ∧ (X S_a_c_c ↔ S_a_c_c) ∧ (X S_b_c_c ↔ S_b_c_c) ∧ (X S_c_c_c ↔ S_c_c_c)))))) ∧ ((n2 ∧ X n2) → ((X O_a ↔ O_a) ∧ (X O_b ↔ O_b) ∧ (X O_c ↔ O_c) ∧ ((X Q_a_a ↔ Q_a_a) ∧ (X Q_b_a ↔ Q_b_a) ∧ (X Q_c_a ↔ Q_c_a) ∧ (X Q_a_b ↔ Q_a_b) ∧ (X Q_b_b ↔ Q_b_b) ∧ (X Q_c_b ↔ Q_c_b) ∧ (X Q_a_c ↔ Q_a_c) ∧ (X Q_b_c ↔ Q_b_c) ∧ (X Q_c_c ↔ Q_c_c) ∧ ((X R_a_a ↔ R_a_a) ∧ (X R_b_a ↔ R_b_a) ∧ (X R_c_a ↔ R_c_a) ∧ (X R_a_b ↔ R_a_b) ∧ (X R_b_b ↔ R_b_b) ∧ (X R_c_b ↔ R_c_b) ∧ (X R_a_c ↔ R_a_c) ∧ (X R_b_c ↔ R_b_c) ∧ (X R_c_c ↔ R_c_c) ∧ ((X S_a_a_a ↔ S_a_a_a) ∧ (X S_b_a_a ↔ S_b_a_a) ∧ (X S_c_a_a ↔ S_c_a_a) ∧ (X S_a_b_a ↔ S_a_b_a) ∧ (X S_b_b_a ↔ S_b_b_a) ∧ (X S_c_b_a ↔ S_c_b_a) ∧ (X S_a_c_a ↔ S_a_c_a) ∧ (X S_b_c_a ↔ S_b_c_a) ∧ (X S_c_c_a ↔ S_c_c_a) ∧ (X S_a_a_b ↔ S_a_a_b) ∧ (X S_b_a_b ↔ S_b_a_b) ∧ (X S_c_a_b ↔ S_c_a_b) ∧ (X S_a_b_b ↔ S_a_b_b) ∧ (X S_b_b_b ↔ S_b_b_b) ∧ (X S_c_b_b ↔ S_c_b_b) ∧ (X S_a_c_b ↔ S_a_c_b) ∧ (X S_b_c_b ↔ S_b_c_b) ∧ (X S_c_c_b ↔ S_c_c_b) ∧ (X S_a_a_c ↔ S_a_a_c) ∧ (X S_b_a_c ↔ S_b_a_c) ∧ (X S_c_a_c ↔ S_c_a_c) ∧ (X S_a_b_c ↔ S_a_b_c) ∧ (X S_b_b_c ↔ S_b_b_c) ∧ (X S_c_b_c ↔ S_c_b_c) ∧ (X S_a_c_c ↔ S_a_c_c) ∧ (X S_b_c_c ↔ S_b_c_c) ∧ (X S_c_c_c ↔ S_c_c_c)))))) ∧ ((n3 ∧ X n1) → ((X R_a_a ↔ (R_a_a ∨ Q_a_a)) ∧ (X R_b_a ↔ (R_b_a ∨ Q_b_a)) ∧ (X R_c_a ↔ (R_c_a ∨ Q_c_a)) ∧ (X R_a_b ↔ (R_a_b ∨ Q_a_b)) ∧ (X R_b_b ↔ (R_b_b ∨ Q_b_b)) ∧ (X R_c_b ↔ (R_c_b ∨ Q_c_b)) ∧ (X R_a_c ↔ (R_a_c ∨ Q_a_c)) ∧ (X R_b_c ↔ (R_b_c ∨ Q_b_c)) ∧ (X R_c_c ↔ (R_c_c ∨ Q_c_c)) ∧ ((X O_a ↔ O_a) ∧ (X O_b ↔ O_b) ∧ (X O_c ↔ O_c) ∧ ((X Q_a_a ↔ Q_a_a) ∧ (X Q_b_a ↔ Q_b_a) ∧ (X Q_c_a ↔ Q_c_a) ∧ (X Q_a_b ↔ Q_a_b) ∧ (X Q_b_b ↔ Q_b_b) ∧ (X Q_c_b ↔ Q_c_b) ∧ (X Q_a_c ↔ Q_a_c) ∧ (X Q_b_c ↔ Q_b_c) ∧ (X Q_c_c ↔ Q_c_c) ∧ ((X S_a_a_a ↔ S_a_a_a) ∧ (X S_b_a_a ↔ S_b_a_a) ∧ (X S_c_a_a ↔ S_c_a_a) ∧ (X S_a_b_a ↔ S_a_b_a) ∧ (X S_b_b_a ↔ S_b_b_a) ∧ (X S_c_b_a ↔ S_c_b_a) ∧ (X S_a_c_a ↔ S_a_c_a) ∧ (X S_b_c_a ↔ S_b_c_a) ∧ (X S_c_c_a ↔ S_c_c_a) ∧ (X S_a_a_b ↔ S_a_a_b) ∧ (X S_b_a_b ↔ S_b_a_b) ∧ (X S_c_a_b ↔ S_c_a_b) ∧ (X S_a_b_b ↔ S_a_b_b) ∧ (X S_b_b_b ↔ S_b_b_b) ∧ (X S_c_b_b ↔ S_c_b_b) ∧ (X S_a_c_b ↔ S_a_c_b) ∧ (X S_b_c_b ↔ S_b_c_b) ∧ (X S_c_c_b ↔ S_c_c_b) ∧ (X S_a_a_c ↔ S_a_a_c) ∧ (X S_b_a_c ↔ S_b_a_c) ∧ (X S_c_a_c ↔ S_c_a_c) ∧ (X S_a_b_c ↔ S_a_b_c) ∧ (X S_b_b_c ↔ S_b_b_c) ∧ (X S_c_b_c ↔ S_c_b_c) ∧ (X S_a_c_c ↔ S_a_c_c) ∧ (X S_b_c_c ↔ S_b_c_c) ∧ (X S_c_c_c ↔ S_c_c_c)))))) ∧ (n0 ∧ ¬n1 ∧ ¬n2 ∧ ¬n3 ∧ ¬Q_a_a ∧ ¬Q_b_a ∧ ¬Q_c_a ∧ ¬Q_a_b ∧ ¬Q_b_b ∧ ¬Q_c_b ∧ ¬Q_a_c ∧ ¬Q_b_c ∧ ¬Q_c_c ∧ (¬R_a_a ∧ ¬R_b_a ∧ ¬R_c_a ∧ ¬R_a_b ∧ ¬R_b_b ∧ ¬R_c_b ∧ ¬R_a_c ∧ ¬R_b_c ∧ ¬R_c_c ∧ (¬S_a_a_a ∧ ¬S_b_a_a ∧ ¬S_c_a_a ∧ ¬S_a_b_a ∧ ¬S_b_b_a ∧ ¬S_c_b_a ∧ ¬S_a_c_a ∧ ¬S_b_c_a ∧ ¬S_c_c_a ∧ ¬S_a_a_b ∧ ¬S_b_a_b ∧ ¬S_c_a_b ∧ ¬S_a_b_b ∧ ¬S_b_b_b ∧ ¬S_c_b_b ∧ ¬S_a_c_b ∧ ¬S_b_c_b ∧ ¬S_c_c_b ∧ ¬S_a_a_c ∧ ¬S_b_a_c ∧ ¬S_c_a_c ∧ ¬S_a_b_c ∧ ¬S_b_b_c ∧ ¬S_c_b_c ∧ ¬S_a_c_c ∧ ¬S_b_c_c ∧ ¬S_c_c_c)))
G ((n0 → X n1) ∧ (n1 → X (n3 ∨ n2)) ∧ (n2 → X n2) ∧ (n3 → X n1)) ∧ G (¬(n0 ∧ n1) ∧ ¬(n0 ∧ n2) ∧ ¬(n0 ∧ n3) ∧ ¬(n1 ∧ n2) ∧ ¬(n1 ∧ n3) ∧ ¬(n2 ∧ n3)) ∧ ((n0 ∧ X n1) → ((X Q_a_a ↔ (Q_a_a ∨ (O_a ∧ choice0_a_a))) ∧ (X Q_b_a ↔ (Q_b_a ∨ (O_a ∧ choice0_b_a))) ∧ (X Q_c_a ↔ (Q_c_a ∨ (O_a ∧ choice0_c_a))) ∧ (X Q_a_b ↔ (Q_a_b ∨ (O_b ∧ choice0_a_b))) ∧ (X Q_b_b ↔ (Q_b_b ∨ (O_b ∧ choice0_b_b))) ∧ (X Q_c_b ↔ (Q_c_b ∨ (O_b ∧ choice0_c_b))) ∧ (X Q_a_c ↔ (Q_a_c ∨ (O_c ∧ choice0_a_c))) ∧ (X Q_b_c ↔ (Q_b_c ∨ (O_c ∧ choice0_b_c))) ∧ (X Q_c_c ↔ (Q_c_c ∨ (O_c ∧ choice0_c_c))) ∧ ((X O_a ↔ O_a) ∧ (X O_b ↔ O_b) ∧ (X O_c ↔ O_c) ∧ ((X R_a_a ↔ R_a_a) ∧ (X R_b_a ↔ R_b_a) ∧ (X R_c_a ↔ R_c_a) ∧ (X R_a_b ↔ R_a_b) ∧ (X R_b_b ↔ R_b_b) ∧ (X R_c_b ↔ R_c_b) ∧ (X R_a_c ↔ R_a_c) ∧ (X R_b_c ↔ R_b_c) ∧ (X R_c_c ↔ R_c_c) ∧ ((X S_a_a_a ↔ S_a_a_a) ∧ (X S_b_a_a ↔ S_b_a_a) ∧ (X S_c_a_a ↔ S_c_a_a) ∧ (X S_a_b_a ↔ S_a_b_a) ∧ (X S_b_b_a ↔ S_b_b_a) ∧ (X S_c_b_a ↔ S_c_b_a) ∧ (X S_a_c_a ↔ S_a_c_a) ∧ (X S_b_c_a ↔ S_b_c_a) ∧ (X S_c_c_a ↔ S_c_c_a) ∧ (X S_a_a_b ↔ S_a_a_b) ∧ (X S_b_a_b ↔ S_b_a_b) ∧ (X S_c_a_b ↔ S_c_a_b) ∧ (X S_a_b_b ↔ S_a_b_b) ∧ (X S_b_b_b ↔ S_b_b_b) ∧ (X S_c_b_b ↔ S_c_b_b) ∧ (X S_a_c_b ↔ S_a_c_b) ∧ (X S_b_c_b ↔ S_b_c_b) ∧ (X S_c_c_b ↔ S_c_c_b) ∧ (X S_a_a_c ↔ S_a_a_c) ∧ (X S_b_a_c ↔ S_b_a_c) ∧ (X S_c_a_c ↔ S_c_a_c) ∧ (X S_a_b_c ↔ S_a_b_c) ∧ (X S_b_b_c ↔ S_b_b_c) ∧ (X S_c_b_c ↔ S_c_b_c) ∧ (X S_a_c_c ↔ S_a_c_c) ∧ (X S_b_c_c ↔ S_b_c_c) ∧ (X S_c_c_c ↔ S_c_c_c)))))) ∧ ((n1 ∧ X n3) → ((X S_a_a_a ↔ (S_a_a_a ∨ R_a_a)) ∧ (X S_b_a_a ↔ (S_b_a_a ∨ R_a_a)) ∧ (X S_c_a_a ↔ (S_c_a_a ∨ R_a_a)) ∧ (X S_a_b_a ↔ (S_a_b_a ∨ R_b_a)) ∧ (X S_b_b_a ↔ (S_b_b_a ∨ R_b_a)) ∧ (X S_c_b_a ↔ (S_c_b_a ∨ R_b_a)) ∧ (X S_a_c_a ↔ (S_a_c_a ∨ R_c_a)) ∧ (X S_b_c_a ↔ (S_b_c_a ∨ R_c_a)) ∧ (X S_c_c_a ↔ (S_c_c_a ∨ R_c_a)) ∧ (X S_a_a_b ↔ (S_a_a_b ∨ R_a_b)) ∧ (X S_b_a_b ↔ (S_b_a_b ∨ R_a_b)) ∧ (X S_c_a_b ↔ (S_c_a_b ∨ R_a_b)) ∧ (X S_a_b_b ↔ (S_a_b_b ∨ R_b_b)) ∧ (X S_b_b_b ↔ (S_b_b_b ∨ R_b_b)) ∧ (X S_c_b_b ↔ (S_c_b_b ∨ R_b_b)) ∧ (X S_a_c_b ↔ (S_a_c_b ∨ R_c_b)) ∧ (X S_b_c_b ↔ (S_b_c_b ∨ R_c_b)) ∧ (X S_c_c_b ↔ (S_c_c_b ∨ R_c_b)) ∧ (X S_a_a_c ↔ (S_a_a_c ∨ R_a_c)) ∧ (X S_b_a_c ↔ (S_b_a_c ∨ R_a_c)) ∧ (X S_c_a_c ↔ (S_c_a_c ∨ R_a_c)) ∧ (X S_a_b_c ↔ (S_a_b_c ∨ R_b_c)) ∧ (X S_b_b_c ↔ (S_b_b_c ∨ R_b_c)) ∧ (X S_c_b_c ↔ (S_c_b_c ∨ R_b_c)) ∧ (X S_a_c_c ↔ (S_a_c_c ∨ R_c_c)) ∧ (X S_b_c_c ↔ (S_b_c_c ∨ R_c_c)) ∧ (X S_c_c_c ↔ (S_c_c_c ∨ R_c_c)) ∧ ((X O_a ↔ O_a) ∧ (X O_b ↔ O_b) ∧ (X O_c ↔ O_c) ∧ ((X Q_a_a ↔ Q_a_a) ∧ (X Q_b_a ↔ Q_b_a) ∧ (X Q_c_a ↔ Q_c_a) ∧ (X Q_a_b ↔ Q_a_b) ∧ (X Q_b_b ↔ Q_b_b) ∧ (X Q_c_b ↔ Q_c_b) ∧ (X Q_a_c ↔ Q_a_c) ∧ (X Q_b_c ↔ Q_b_c) ∧ (X Q_c_c ↔ Q_c_c) ∧ ((X R_a_a ↔ R_a_a) ∧ (X R_b_a ↔ R_b_a) ∧ (X R_c_a ↔ R_c_a) ∧ (X R_a_b ↔ R_a_b) ∧ (X R_b_b ↔ R_b_b) ∧ (X R_c_b ↔ R_c_b) ∧ (X R_a_c ↔ R_a_c) ∧ (X R_b_c ↔ R_b_c) ∧ (X R_c_c ↔ R_c_c)))))) ∧ ((n1 ∧ X n2) → ((X O_a ↔ O_a) ∧ (X O_b ↔ O_b) ∧ (X O_c ↔ O_c) ∧ ((X Q_a_a ↔ Q_a_a) ∧ (X Q_b_a ↔ Q_b_a) ∧ (X Q_c_a ↔ Q_c_a) ∧ (X Q_a_b ↔ Q_a_b) ∧ (X Q_b_b ↔ Q_b_b) ∧ (X Q_c_b ↔ Q_c_b) ∧ (X Q_a_c ↔ Q_a_c) ∧ (X Q_b_c ↔ Q_b_c) ∧ (X Q_c_c ↔ Q_c_c) ∧ ((X R_a_a ↔ R_a_a) ∧ (X R_b_a ↔ R_b_a) ∧ (X R_c_a ↔ R_c_a) ∧ (X R_a_b ↔ R_a_b) ∧ (X R_b_b ↔ R_b_b) ∧ (X R_c_b ↔ R_c_b) ∧ (X R_a_c ↔ R_a_c) ∧ (X R_b_c ↔ R_b_c) ∧ (X R_c_c ↔ R_c_c) ∧ ((X S_a_a_a ↔ S_a_a_a) ∧ (X S_b_a_a ↔ S_b_a_a) ∧ (X S_c_a_a ↔ S_c_a_a) ∧ (X S_a_b_a ↔ S_a_b_a) ∧ (X S_b_b_a ↔ S_b_b_a) ∧ (X S_c_b_a ↔ S_c_b_a) ∧ (X S_a_c_a ↔ S_a_c_a) ∧ (X S_b_c_a ↔ S_b_c_a) ∧ (X S_c_c_a ↔ S_c_c_a) ∧ (X S_a_a_b ↔ S_a_a_b) ∧ (X S_b_a_b ↔ S_b_a_b) ∧ (X S_c_a_b ↔ S_c_a_b) ∧ (X S_a_b_b ↔ S_a_b_b) ∧ (X S_b_b_b ↔ S_b_b_b) ∧ (X S_c_b_b ↔ S_c_b_b) ∧ (X S_a_c_b ↔ S_a_c_b) ∧ (X S_b_c_b ↔ S_b_c_b) ∧ (X S_c_c_b ↔ S_c_c_b) ∧ (X S_a_a_c ↔ S_a_a_c) ∧ (X S_b_a_c ↔ S_b_a_c) ∧ (X S_c_a_c ↔ S_c_a_c) ∧ (X S_a_b_c ↔ S_a_b_c) ∧ (X S_b_b_c ↔ S_b_b_c) ∧ (X S_c_b_c ↔ S_c_b_c) ∧ (X S_a_c_c ↔ S_a_c_c) ∧ (X S_b_c_c ↔ S_b_c_c) ∧ (X S_c_c_c ↔ S_c_c_c)))))) ∧ ((n2 ∧ X n2) → ((X O_a ↔ O_a) ∧ (X O_b ↔ O_b) ∧ (X O_c ↔ O_c) ∧ ((X Q_a_a ↔ Q_a_a) ∧ (X Q_b_a ↔ Q_b_a) ∧ (X Q_c_a ↔ Q_c_a) ∧ (X Q_a_b ↔ Q_a_b) ∧ (X Q_b_b ↔ Q_b_b) ∧ (X Q_c_b ↔ Q_c_b) ∧ (X Q_a_c ↔ Q_a_c) ∧ (X Q_b_c ↔ Q_b_c) ∧ (X Q_c_c ↔ Q_c_c) ∧ ((X R_a_a ↔ R_a_a) ∧ (X R_b_a ↔ R_b_a) ∧ (X R_c_a ↔ R_c_a) ∧ (X R_a_b ↔ R_a_b) ∧ (X R_b_b ↔ R_b_b) ∧ (X R_c_b ↔ R_c_b) ∧ (X R_a_c ↔ R_a_c) ∧ (X R_b_c ↔ R_b_c) ∧ (X R_c_c ↔ R_c_c) ∧ ((X S_a_a_a ↔ S_a_a_a) ∧ (X S_b_a_a ↔ S_b_a_a) ∧ (X S_c_a_a ↔ S_c_a_a) ∧ (X S_a_b_a ↔ S_a_b_a) ∧ (X S_b_b_a ↔ S_b_b_a) ∧ (X S_c_b_a ↔ S_c_b_a) ∧ (X S_a_c_a ↔ S_a_c_a) ∧ (X S_b_c_a ↔ S_b_c_a) ∧ (X S_c_c_a ↔ S_c_c_a) ∧ (X S_a_a_b ↔ S_a_a_b) ∧ (X S_b_a_b ↔ S_b_a_b) ∧ (X S_c_a_b ↔ S_c_a_b) ∧ (X S_a_b_b ↔ S_a_b_b) ∧ (X S_b_b_b ↔ S_b_b_b) ∧ (X S_c_b_b ↔ S_c_b_b) ∧ (X S_a_c_b ↔ S_a_c_b) ∧ (X S_b_c_b ↔ S_b_c_b) ∧ (X S_c_c_b ↔ S_c_c_b) ∧ (X S_a_a_c ↔ S_a_a_c) ∧ (X S_b_a_c ↔ S_b_a_c) ∧ (X S_c_a_c ↔ S_c_a_c) ∧ (X S_a_b_c ↔ S_a_b_c) ∧ (X S_b_b_c ↔ S_b_b_c) ∧ (X S_c_b_c ↔ S_c_b_c) ∧ (X S_a_c_c ↔ S_a_c_c) ∧ (X S_b_c_c ↔ S_b_c_c) ∧ (X S_c_c_c ↔ S_c_c_c)))))) ∧ ((n3 ∧ X n1) → ((X R_a_a ↔ (R_a_a ∨ Q_a_a)) ∧ (X R_b_a ↔ (R_b_a ∨ Q_b_a)) ∧ (X R_c_a ↔ (R_c_a ∨ Q_c_a)) ∧ (X R_a_b ↔ (R_a_b ∨ Q_a_b)) ∧ (X R_b_b ↔ (R_b_b ∨ Q_b_b)) ∧ (X R_c_b ↔ (R_c_b ∨ Q_c_b)) ∧ (X R_a_c ↔ (R_a_c ∨ Q_a_c)) ∧ (X R_b_c ↔ (R_b_c ∨ Q_b_c)) ∧ (X R_c_c ↔ (R_c_c ∨ Q_c_c)) ∧ ((X O_a ↔ O_a) ∧ (X O_b ↔ O_b) ∧ (X O_c ↔ O_c) ∧ ((X Q_a_a ↔ Q_a_a) ∧ (X Q_b_a ↔ Q_b_a) ∧ (X Q_c_a ↔ Q_c_a) ∧ (X Q_a_b ↔ Q_a_b) ∧ (X Q_b_b ↔ Q_b_b) ∧ (X Q_c_b ↔ Q_c_b) ∧ (X Q_a_c ↔ Q_a_c) ∧ (X Q_b_c ↔ Q_b_c) ∧ (X Q_c_c ↔ Q_c_c) ∧ ((X S_a_a_a ↔ S_a_a_a) ∧ (X S_b_a_a ↔ S_b_a_a) ∧ (X S_c_a_a ↔ S_c_a_a) ∧ (X S_a_b_a ↔ S_a_b_a) ∧ (X S_b_b_a ↔ S_b_b_a) ∧ (X S_c_b_a ↔ S_c_b_a) ∧ (X S_a_c_a ↔ S_a_c_a) ∧ (X S_b_c_a ↔ S_b_c_a) ∧ (X S_c_c_a ↔ S_c_c_a) ∧ (X S_a_a_b ↔ S_a_a_b) ∧ (X S_b_a_b ↔ S_b_a_b) ∧ (X S_c_a_b ↔ S_c_a_b) ∧ (X S_a_b_b ↔ S_a_b_b) ∧ (X S_b_b_b ↔ S_b_b_b) ∧ (X S_c_b_b ↔ S_c_b_b) ∧ (X S_a_c_b ↔ S_a_c_b) ∧ (X S_b_c_b ↔ S_b_c_b) ∧ (X S_c_c_b ↔ S_c_c_b) ∧ (X S_a_a_c ↔ S_a_a_c) ∧ (X S_b_a_c ↔ S_b_a_c) ∧ (X S_c_a_c ↔ S_c_a_c) ∧ (X S_a_b_c ↔ S_a_b_c) ∧ (X S_b_b_c ↔ S_b_b_c) ∧ (X S_c_b_c ↔ S_c_b_c) ∧ (X S_a_c_c ↔ S_a_c_c) ∧ (X S_b_c_c ↔ S_b_c_c) ∧ (X S_c_c_c ↔ S_c_c_c)))))) ∧ (n0 ∧ ¬n1 ∧ ¬n2 ∧ ¬n3 ∧ ¬Q_a_a ∧ ¬Q_b_a ∧ ¬Q_c_a ∧ ¬Q_a_b ∧ ¬Q_b_b ∧ ¬Q_c_b ∧ ¬Q_a_c ∧ ¬Q_b_c ∧ ¬Q_c_c ∧ (¬R_a_a ∧ ¬R_b_a ∧ ¬R_c_a ∧ ¬R_a_b ∧ ¬R_b_b ∧ ¬R_c_b ∧ ¬R_a_c ∧ ¬R_b_c ∧ ¬R_c_c ∧ (¬S_a_a_a ∧ ¬S_b_a_a ∧ ¬S_c_a_a ∧ ¬S_a_b_a ∧ ¬S_b_b_a ∧ ¬S_c_b_a ∧ ¬S_a_c_a ∧ ¬S_b_c_a ∧ ¬S_c_c_a ∧ ¬S_a_a_b ∧ ¬S_b_a_b ∧ ¬S_c_a_b ∧ ¬S_a_b_b ∧ ¬S_b_b_b ∧ ¬S_c_b_b ∧ ¬S_a_c_b ∧ ¬S_b_c_b ∧ ¬S_c_c_b ∧ ¬S_a_a_c ∧ ¬S_b_a_c ∧ ¬S_c_a_c ∧ ¬S_a_b_c ∧ ¬S_b_b_c ∧ ¬S_c_b_c ∧ ¬S_a_c_c ∧ ¬S_b_c_c ∧ ¬S_c_c_c)))
src/main/scala/de/tum/workflows/Main.scala
View file @
1eee9254
...
...
@@ -21,7 +21,7 @@ object Main extends App with LazyLogging {
Add
(
Fun
(
"O"
,
"s"
),
"Q"
,
List
(
"x"
,
"s"
))
),
Loop
(
List
(
ForallBlock
(
List
(
"x"
,
"y"
,
"s"
),
Forall
May
Block
(
List
(
"x"
,
"y"
,
"s"
),
Add
(
Fun
(
"R"
,
List
(
"y"
,
"s"
)),
"S"
,
List
(
"x"
,
"y"
,
"s"
))
),
ForallBlock
(
List
(
"x"
,
"s"
),
...
...
src/main/scala/de/tum/workflows/WorkflowEncoding.scala
View file @
1eee9254
...
...
@@ -128,7 +128,7 @@ object Encoding extends LazyLogging {
val
terms
=
res
.
map
(
_
.
_1
)
++
staying
Implies
(
And
(
nodeVar
(
e
.
from
),
Next
(
nodeVar
(
e
.
to
))),
BinOp
.
makeL
(
And
.
apply
,
terms
))
}
BinOp
.
makeL
(
And
.
apply
,
impls
)
Globally
(
BinOp
.
makeL
(
And
.
apply
,
impls
)
)
}
def
encodeInitial
(
sig
:
Signature
,
g
:
Graph
[
Int
,
LDiEdge
])
=
{
...
...
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment